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Cluster persistence in one-dimensional diffusion-limited cluster-cluster aggregation

E. K. O. Hellén,* P. E. Salmi,† and M. J. Alava‡
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The persistence probability,PC(t), of a cluster to remain unaggregated is studied in cluster-cluster aggre-
gation, when the diffusion coefficient of a cluster depends on its sizes as D(s);sg. In the mean field the
problem maps to the survival of three annihilating random walkers with time-dependent noise correlations. For
g>0 the motion of persistent clusters becomes asymptotically irrelevant and the mean-field theory provides a
correct description. Forg,0 the spatial fluctuations remain relevant and the persistence probability is over-
estimated by the random walk theory. The decay of persistence determines the small size tail of the cluster size
distribution. For 0,g,2 the distribution is flat and, surprisingly, independent ofg.
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I. INTRODUCTION

Aggregation models are useful in describing various p
nomena from chemical engineering, material sciences, at
sphere research to even astrophysics@1–3#. One general
property of these models is that they lead to dynamic sc
invariance: when all the lengths are scaled by the charac
istic length, the system looks the same at different tim
Lately, studies of first passage problems@4# under the name
persistence@5–7# have shown that not necessarily all th
properties of a dynamically scaling system are character
by a single scale@8#. Here we address the probability of
cluster to remain intact in an aggregation system and s
how this quantity and the associated length scale relate to
physically relevant issue of the shape of the cluster size
tribution.

In an aggregation system one can define many fi
passage problems and related quantities@9#. We study the
probability that a cluster has not aggregated with any ot
one before timet @10#. This probability is called cluster per
sistence and denoted byPC(t). Similar problems consider
ing uninfected walkers in one-dimensional reaction-diffus
systems@11# and Potts model@12# have recently been show
to display interesting behavior. We concentrate on diffusi
limited cluster-cluster aggregation~DLCA! in one dimen-
sion, where the dynamics is dominated by spatial fluctuati
@13#. For high dimensional systems these may be neglec
and on the mean-field level, valid for dimensions higher th
the upper critical dimension, aggregation is well understo
@14–16#.

The DLCA model is defined so that the nearest neigh
occupied sites in a lattice are identified as a cluster. E
cluster diffuses with a size dependent diffusion consta
D(s);sg, where g is the diffusion exponent. If a cluste
collides with another one, the two clusters are irreversi
merged together and the aggregate diffuses either fasteg
.0) or slower (g,0) than either of the colliding clusters
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While the size independent diffusion (g50) is exactly solv-
able in one dimension, it forms a marginal case between
completely different aggregation mechanisms@17#. We study
here the more physically interesting problem withgÞ0.

The aim is to study the dependence of cluster persiste
on the diffusion exponentg and extend the study presente
in Ref. @10#. We also pay attention to the random-walk~RW!
problems that ensue as on a mean-field level the proble
reduced to the survival of three annihilating random walke
While theg50 case is readily solvable by various metho
@18,19#, already the case of three annihilating particles w
unequal diffusion constants is rather involved@20#. Hereg
Þ0 leads to time-dependent diffusion coefficients, and
derive a Fokker-Planck~FP! equation for the survival of
these particles. Forg>0 its analysis yields an algebraicall
decaying survival probabilityPsurv(t);t2uRW(g). The sur-
vival exponentuRW is discontinuous and nonmonotonic as
is given by uRW(g)52/(22g) for 0,g,2 and uRW(0)
53/2. The numerical comparison of the survival and pers
tence probabilities validates the theory and hencePC(t)
;t2uC with uC5uRW.

For g,0 simulations show that both the survival an
persistence probabilities decay stretched exponentially
exp(2Ctb). The Fokker-Planck equation is not amenable
analytic analysis, so we use a Lifshitz tail argument to u
derstand the survival. Such heuristic arguments and nume
suggest a stretching exponentbRW(g)52g/(422g). The
Lifshitz tail argument indicates that the exponent is affec
by the fluctuations in the motion of the particles that neig
bor the surviving one. These are taken into account o
approximately in the mean-field theory and for the DLC
numerics givesbC522g/(623g). A closer examination
reveals that also the distance distribution between the
ticles surrounding a surviving one in the mean-field mo
scales in a different way than the corresponding distribut
of the DLCA.

In addition, we show how the cluster persistence is rela
to the cluster size distribution. To clarify the connection, co
sider the dynamic scaling in DLCA. Both simulations an
experiments show that the cluster size distributionns(t) ~the
number of cluster of sizes per lattice site at timet) scales
as @1#
©2002 The American Physical Society08-1
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HELLÉN, SALMI, AND ALAVA PHYSICAL REVIEW E 66, 051108 ~2002!
ns~ t !5S~ t !22f S s

S~ t ! D , ~1!

where S(t);tz is the average cluster size and the scal
limit, s→` andS(t)→` with s/S(t) fixed, is taken. In one
dimension the dynamic exponentz51/(22g) @21,22#. For
g>0 the cluster size distribution is broad in the sense t
the scaling function behaves asf (x);x2t as x[s/S(t)
→0. For g,0 the scaling function is bell shaped andf (x)
;exp(2Ax2umu) for x→0, whereA is a constant. To deter
mine the polydispersity exponentt, which characterizes the
number of small clusters, is nontrivial even on a mean-fi
level @14,23# whereas the similar exponentm readily follows
from scaling analysis@15#. All the exponentsz, t, andm are
universal, i.e., they do not depend on the fine details of
model. They can, and it is natural to expect that they
depend on the diffusion exponentg.

One of the main results of this paper is that the expone
describing the decay of the cluster persistence are relate
these universal exponents as

uC5~22t!z, ~2a!

bC5umuz. ~2b!

Quite unexpectedly, the polydispersity exponent is a c
stant,t50, for 0,g,2, but discontinuous sincet(g50)
521. The reasoning leading to the relations~2a! and~2b! is
universally applicable, so that the behavior of the tail of clu
ter size distribution might be tackled through cluster pers
tence in other models, too.

The outline of the paper is as follows. In Sec. II the mea
field random walk theory is formulated and the associa
Fokker-Planck equation is derived. Section III starts by
scribing the simulation methods. Thereafter the mean-fi
theory is validated forg>0 by comparing the survival prob
ability obtained from the analysis of the Fokker-Planck eq
tion to the simulation results of both the random-walk syst
and the DLCA one. Forg,0 a similar comparison show
the effect of spatial fluctuations, and the stretched expon
tial decay of the survival probability is explained using
Lifshitz tail argument. Section IV concentrates on the re
tion between the persistence and the small size tail of
cluster size distribution. The paper ends with conclusions
Sec. V.

II. MEAN FIELD: REDUCTION TO A THREE PARTICLE
PROBLEM

The two clusters surrounding a persistent one will gr
when they collide with other clusters~but not with the per-
sistent one!. The cluster in the middle will be persistent un
it collides with one of the neighbors. After this the two r
maining clusters would contribute to persistence only by
creasing the mass of the clusters surrounding another pe
tent cluster. This is negligible at late times, since t
persistent clusters will be separated by many nonpersis
ones, i.e.,tuC@tz. In other words, the correlations in th
system grow only astz and each persistent cluster is asym
05110
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totically independent. Thus it is sufficient to consider on
one persistent cluster and its two neighbors.

The collisions of the surrounding clusters make them b
ger and increase or decrease the diffusivity. We make
mean-field approximation that each cluster neighboring
persistent one will grow as an average cluster does. He
we replace the true process, where the surrounding clus
collide at some discrete timest i , by a continuous one, wher
the surrounding clusters grow asS(t). As D(s);sg these
clusters will diffuse with time-dependent diffusion coeffi
cients. In the following analysis we will ignore the possib
early time crossover effects in the growth of the avera
cluster size and the diffusion coefficients of the clusters s
rounding a persistent one are taken to follow a true pow
law at all times. This will only affect the early time behavio

The finite extent of clusters is irrelevant for cluster pe
sistence and we will consider the three clusters as point
particles from now on. Letxi(t)( i 51,2,3) denote the posi
tions of the particles at timet such that x1(0),x2(0)
,x3(0). The motion of these particles is described by t
Langevin equations

ẋi~ t !5j i~ t !, ~3!

with Gaussian white noiseŝj i(t)&50 and ^j i(t)j j (t8)&
52Di(t)d i j d(t2t8). The overdot denotes derivative wit
respect to time and the brackets an ensemble average
different realizations. The diffusion coefficients of the pa
ticles read asD1(t)5D3(t)5D1tgz and D2(t)5D2. The
meaning of a time-dependent diffusion coefficient, s
D1(t), is simply that the particle 1 will follow a simple
diffusive motion with a diffusion constantD1 in the time
scale

T1~ t !5E
0

t

dt8D1~ t8!/D15tgz11/~gz11!. ~4!

As we are interested in the survival of the middle partic
(x2), the process terminates when eitherx15x2 or x25x3. It
is convenient to consider the distances between the parti
x12(t)5x2(t)2x1(t)>0 and x23(t)5x3(t)2x2(t)>0.
These obey similar Langevin equations

ẋ12~ t !5G12~ t !

ẋ23~ t !5G23~ t !,
~5!

where ^G12(t)&5^G23(t)&50 and ^G12(t)G12(t8)&
5^G23(t)G23(t8)&52(D21D1tgz)d(t2t8). The two noises
are correlated as the motion of the middle particle affe
both distances: ^G12(t)G23(t8)&52^j2(t)j2(t8)&
522D2d(t2t8)Þ0. For g.0 the noise correlations be
come asymptotically irrelevant, which is not the case forg
,0.

To proceed, we transform Eqs.~5! to a Fokker-Planck
equation for the probability densityr(x12,x23;t) of the two
distances at timet. Due to the mutual correlations this i
easiest to do by computing the drift and diffusion coefficie
from their definitions
8-2
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FIG. 1. Visualization of the three particle system when the initial distancel 0510 for ~a! g522 (z51/4) and~b! g51 (z51). The
probabilities of these configurations are of order 1028 and 1024, respectively. At the final time the ratioD2 /(D1tgz) is about 102 in ~a! and
1023 in ~b!. The dashed lines in~a! show ta behavior witha5375.0~see Sec. III D for details!.
th
a

d
a

i-

to
is-

de-

he
on

ly

ent
r

the
is

e

s-

es
e

col-
hat
of

m-
ate
Di5 lim
Dt→0

1

Dt
^xi~ t1Dt !2xi~ t !&,

Di j 5
1

2
lim

Dt→0

1

Dt
^@xi~ t1Dt !2xi~ t !#@xj~ t1Dt !2xj~ t !#&,

and insert these to the general Fokker-Planck equation@24#

]r

]t
52(

i 51

2
]

]xi
Dir1 (

i , j 51

2
]2

]xi]xj
Di j r. ~6!

A straightforward calculation gives

]r

]t
5~D21D1tgz!S ]2r

]x12
2

1
]2r

]x23
2 D 22D2

]2r

]x12]x23
. ~7!

The initial condition is now r(x12,x23;0)5d(x12

2x12
0 )d(x232x23

0 ), where x12
0 5x12(0) and x23

0 5x23(0) are
the initial distances between particles. The termination of
process when two particles collide gives absorbing bound
conditions along the axis, i.e.,r(x12,0;t)50 andr(0,x23;t)
50 for all timest.

Thus the original many body problem has been reduce
the survival of three annihilating random walkers. Given th
one can solve Eq.~7! with the appropriate boundary cond
tions, the survival probability of the middle particle~which
corresponds to the persistent cluster! can be obtained as

Psurv~ t !5E
0

`

dx12E
0

`

dx23 r~x12,x23;t !. ~8!

When the survival probability decays algebraically,Psurv(t)
;t2uRW, the associated exponentuRW is called the survival
exponent.
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III. COMPARISON OF THE SIMULATIONS AND THEORY

A. Details of simulations

The DLCA simulations are done on a lattice of sizeL with
periodic boundary conditions. Concentrationf of sites is
filled with particles and nearest neighbor particles belong
the same cluster. The initial distribution is either monod
perse,ns(0)5d1,s , with equal distancesl 0 between neigh-
boring clusters or random, in which case each site is in
pendently filled with probability f. The persistence
exponent is independent of the initial distribution, but t
early time behavior of the persistence probability depends
it @9#.

In the dynamical evolution a cluster is selected random
and time is increased by 1/@N(t)Dmax(t)#. HereN(t) denotes
the number of clusters andDmax(t) is the maximum of the
diffusion coefficients of all the clusters at timet. The cluster
is moved one lattice spacing with cluster size depend
probabilityD(s)/Dmax(t). If the cluster collides with anothe
one, the clusters are irreversibly aggregated together and
values ofN and Dmax are updated. Then a new cluster
selected and the above procedure is repeated.

The three particle simulation is similar to that of th
DLCA. Initially the distance between particles isl 0. A par-
ticle i P$1,2,3% is selected randomly and it is moved a di
tance a either to the left or to the right with probability
Di(t)/D.(t). Here D.(t)5max$D1(t),D2 ,D3(t)% is the
maximum of the diffusion coefficients of the three particl
at that time. The distancea is set to correspond the lattic
constant of the DLCA simulations, i.e.,a51. Irrespective of
the movement, time is increased by 1/@3D.(t)# and the
time-dependent diffusion coefficientsD1(t) and D2(t) are
updated to new values. This procedure continues until a
lision occurs. Figure 1 shows examples of configurations t
survive for a long while for negative and positive values
the diffusion exponent.

The faster the survival probability decays the more co
putation time is used in simulating systems, which termin
8-3
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HELLÉN, SALMI, AND ALAVA PHYSICAL REVIEW E 66, 051108 ~2002!
at early times. In order to sample efficiently the long livin
interesting configurations we use a cloning method@25,26#
for the three particle simulations wheng,0: At timest j we
makenj copies of all the systems, which have survived up
this time. Typically simulations are averaged over 53106

initializations and the system is copied at times 10, 102, and
103 with 23103, 53104, and 104 copies, respectively. This
enables us to reach probabilities less than 10215.

B. Size-independent diffusion„gÄ0… and crossover behavior

When the diffusion constant of a cluster does not dep
on its size, i.e.,g50, an exact solution is possible as th
collisions of the clusters surrounding a persistent one w
other clusters do not matter@27#. For the same reason th
mean-field approximation becomes exact and reduces t
old problem of the survival probability of three similar ann
hilating random walkers@18#. The persistence and surviva
exponents attain the value 3/2.

This result can also be obtained from the Eq.~7! for
which this particular case simplifies to

]r

]t
5S ]2r

]x12
2

1
]2r

]x23
2 D 2

]2r

]x12]x23
, ~9!

where we have takenD15D251/2. A coordinate transfor-
mation x5(x121x23),y5(x122x23)/A3 reduces this to a
diffusion equation

]r

]t
5

]2r

]x2
1

]2r

]y2
, ~10!

with the boundary conditionr50 along linesy56x/A3.
This corresponds to a two-dimensional wedge of angleQ
5p/3, in which the survival probability decays ast2p/2Q

;t23/2 @4#.
It is also interesting to know how the asymptotic regim

where Psurv(t);t2uRW, is reached. In the caseD15D2
5D35D(g50) with the initial distances between particle
beingx12

0 5x23
0 5 l 0 the solution including the first correctio

to scaling is given by@19,27#

Psurv~ t !'
1

4A2p
S l 0

2

Dt D
3/2S 12

3

16

l 0
2

Dt D . ~11!

The correction becomes negligible for times much lar
than the crossover timetcr53l 0

2/(16D). For gÞ0 the cor-
rections go in powers of the ratio of the diffusion coef
cients,D2 /D1tgz. For g.0 this is demonstrated in Appen
dix A and for the corresponding two particle problem it m
be shown exactly~see Appendix B!. Therefore, the crossove
time depends ong as tcr;r (22g)/ugu, where the constantr
'30 according to simulations. Astcr diverges forugu→0,
we can expect that the asymptotic scaling regime can
reached in simulations only for relatively large values ofugu.
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C. Validation of the mean-field theory „gÌ0…

We have not been able to solve Eq.~7! exactly. The rea-
son is that the absorbing boundary conditions together w
the two time scales appearing in the problem make the s
dard methods~Laplace or Fourier transforms; polar coord
nates! unapplicable. Nor is it possible to transform the equ
tion to a diffusion equation with simple enough bounda
conditions. However, the full solution is not needed for t
determination of the survival exponent since this is given
the leading large time behavior whent→`. It would only
provide us information about the crossover effects, wh
according to our analysis~see Appendix A! and the numeri-
cal simulations~see below! are rather pronounced wheng is
close to zero.

A change of variables x5(x121x23)/A2,y5(x12

2x23)/A2 transforms Eq.~7! to

]r

]t
5D1tgz

]2r

]x2
1~D1tgz12D2!

]2r

]y2
, ~12!

with the boundary conditionr50 along y56x, i.e., a
wedge of angleQ5p/2. Wheng.0 the constant term is
negligible at long times (D1tgz@D2) and the diffusion be-
comes isotropic. This can be shown by directly solving E
~7! and analyzing the large time behavior of the soluti
~Appendix A!. A change to the time scaleT1 @see Eq.~4!#
transforms Eq.~12! to the form of Eq.~10! and the survival
probability Psurv(t);T1

2p/2Q;T1
21;t2(11gz). As z51/(2

2g) the survival exponentuRW(g)52/(22g)52z.
The approximation of neglecting the constant term in E

~7! corresponds to a complete separation of the time sca
i.e., to a situation, where the middle particle is at rest (D2
50). Thus forg.0 one could simply determine the surviv
exponent by considering two independent random walk
with a fixedabsorbing boundary in between@compare to Fig.
1 ~b!#. In other words, the motion of the ‘‘slow’’ particle
becomes asymptotically irrelevant. This can be exac
shown for the the corresponding two particle problem~Ap-
pendix B!.

Figure 2 compares the survival and persistence proba
ties. The initial distances between particles in the rando
walk simulations are set to be the same as in the DLCA. T
probabilities decay algebraically at large times and the o
difference in the decay is between the amplitudes. This i
be expected as the transient effects of the growth of the
erage cluster size are not taken into account in the rand
walk picture.

The inset shows local exponents, i.e., logarithmic deri
tives of the probabilities, which converge to the value o
tained from the Fokker-Planck equation,uRW52/(22g) for
g.0 and uRW53/2 for g50. The asymptotic regime is
reached only forg50 andg*0.5. In the latter region the
local exponents saturate, when the ratio of the diffusion
efficients is of about 30. For example, forg50.25 this would
corresponds totcr'231010 which is beyond the time
reached in simulations.

Note that the persistence exponent is discontinuous
nonmonotonic atg50, i.e., 3/25uC(0).uC(01)51. This
8-4
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CLUSTER PERSISTENCE IN ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 66, 051108 ~2002!
FIG. 2. ~a! Comparison between the survival~filled symbols! and persistence~open symbols! probabilities.~b! The corresponding loca
exponents. The horizontal lines correspond to the analytic values given byu52/(22g). The data for RW survival are averaged over variab
number of realizations ranging from 109 for g50 to 23107 for g50.5. The DLCA simulations are averaged over 50 000 simulations o
system of size 55 555. The initial distance between particles is 10@upper curves in Fig.~a!# or 2 @lower curves#.
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seems first counterintuitive since making some of the c
ters to diffuse faster helps others to survive longer! On
other hand, as time elapses a persistent cluster beco
slower as compared to an average one. In this way it ev
tually adopts the optimal strategy@28# by becoming station-
ary.

D. Fluctuation dominated persistence„gË0…

For g,0 the diffusion of the clusters surrounding a pe
sistent one slows down. Consider the random-walk pict
and proceeding similarly as forg.0 above. Fixing now par-
ticles 1 and 3 would lead to an interval of fixed length a
hence to an exponentially decaying survival probabil
However, simulations show that the survival deca
stretched exponentially in time,Psurv(t);exp(2CRWtbRW).
Furthermore, as will be shown below, although the surrou
ing particles become slower, their motion cannot be
glected even at the long time limit. This is a collective effe
and in clear contrast to the exactly solvable two particle ca
where the fast particle eventually dominates the surv
~Appendix B!.

In Figure 3 we plot2 ln@Psurv(t)# vs t on a log-log scale
so that a stretched exponential decay corresponds
straight line with a slopebRW. The final slope is independen
of the initial distance between particles, and thus the stre
ing exponent is universal.

Figure 4 shows the location distributionp(x3 ;t) of the
particle 3~the one for the particle 1 would be the same!. It
scales as

p~x3 ;t !5t2zgS x2bta

tz D ~13!

implying that although the distribution widens astz, the ex-
pectation value of the distance from the origin grows asbta

with a nontrivial exponentz,a,1/2 @see Fig. 1~a!#. The
scaling is similar to the reaction front in the originally sep
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rated reaction-diffusion systemA1B→C, where the reac-
tion zone becomes sharp at late times, i.e.,z,a @29,30#. It is
striking that the scaling functiong(y) is within the numerical
accuracy a simple Gaussian.

The consequence of Eq.~13! is that the average distanc
between the particles 1 and 3 grows@see Fig. 1~a!#. If it
would grow deterministicallyas ta, with a,1/2, the sur-
vival probability would decay asymptotically stretched exp
nentially with the exponentbdet5122a @31#. For example,
for g522.0 the numerics gives a rough estimatea'0.36
and 122a'0.28, which is in reasonable agreement with t
numerically obtained stretching esponentbRW'0.25~see in-
set of Fig. 3!.

To understand the origin of the new length scaleta the
next logical step is to try to take the length fluctuations of t

FIG. 3. Survival probabilities forg522 with l 052 ~dashed!,
3 ~dotted!, and 4~dot dashed!. The solid line is a guide to eye with
a slope bRW50.25. The inset shows how the local stretchi
exponents converge to the same value independent of the in
distancel 0.
8-5
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HELLÉN, SALMI, AND ALAVA PHYSICAL REVIEW E 66, 051108 ~2002!
interval into account. We make this using a Lifshitz tail a
proach@4#. It is based on the assumption that the main c
tribution to the survival is provided by extreme configur
tions, where the particles surrounding the surviving one h
diffused far apart from each other. We write the surviv
probability as

Psurv~ t !'E
0

`

dlP~ l ;t !Q~ tu l !, ~14!

where P( l ;t) is the probability distribution of the interva
lengthsl 5x32x1 around a surviving particle at timet and
Q(tu l ); l 21exp(2p2Dt/l2) is the survival probability of a
particle in an interval of lengthl @4,32#. In order to make
progress, we need to know the largel behavior ofP( l ;t). It
scales similarly asp(x3 ;t),

P~ l ;t !5t2zGS l 22bta

tz D , ~15!

where the largey tail of G(y) is Gaussian as the positio
distributions of particles 1 and 3 are Gaussian. Although i
irrelevant in what follows, the smally part of G(y) decays
faster than the largey tail due to the restrictionx3.x1.

Denote the variance of the Gaussian tail ofG(y) by s2.
Then Eq.~14! gives

Psurv~ t !;tz2aE
0

`

dlexpS 2
~ l 22bta!2

2s2t2z
2

p2Dt

l 2 D .

When t→` the integrand becomes sharply peaked and m
be evaluated using the saddle point method. This givea
5(2z11)/4 and

Psurv~ t !;t (6z21)/4e2Ct(122z)/2
. ~16!

Inserting the value ofa coming from the Lifshitz argumen
to the result of an algebraically expanding interv

FIG. 4. The scaling plot of the location distribution of the righ
most particle in the random-walk simulations forg522. The val-
ues of the scaling exponents arez51/4 anda53/8. The solid line
shows a Gaussian fit to the data.
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bdet5122a, leads to the same streching exponentb5(1
22z)/2. These two results coincide, as a consequence o
peculiar scaling@Eq. ~15!# and that the tail of the interva
length distribution decays asG(y);exp(2y2). We empha-
size that the fluctuations of the surrounding, slow partic
determine the stretching exponent and that it is purely a
incidence that the Lifshitz tail argument gives the same re
as the use of the average value.

The stretching exponentbRW5(122z)/2 has an obvious
interpretation. There are two length scales in the proble
The first one is related to the random walkers with tim
dependent diffusion coefficients,L1;tz, and the other to the
surviving particle,L2;t1/2. The argument of the exponentia
decay is simply the ratio of these two scales in the proble
Psurv(t);exp(2L2 /L1). Although this result is reasonable
the calculation above shows the delicacy of the survival:
distance between the particles 1 and 3 involves a third, n
trivial length scaleL3;ta with a5(2z11)/4. The above
considerations can also be made by resorting to an argum
which considers the two characteristic time scalesT1
;t11gz andT2;t. It is easy to see, that the ratios betwe
the scales obey a diffusive like scaling relationL2 /L1

;AT2 /T1 such that any quantity involving the ratio o
length scales may be given in terms of the ratio of the ti
scales and vice versa.

In Fig. 5 the survival probabilities are plotted forg,0
~for a similar figure for the persistence see Fig. 3 in R
@10#!. In spite of being able to simulate rather small pro
abilities the asymptotic regime is not reached in the simu
tions. Similar problems with a slow convergence to t
asymptotic value have been encountered in other react
diffusion systems@33,34# and they might be overcome by
more efficient use of the cloning method@25,26#. The inset
of Fig. 5 shows bounds for the stretching exponents a
function of the dynamic exponentz51/(22g). The upper
bounds are obtained by fitting a line to the three or fo
largest time points and measuring the slope. To obtain
lower bound, we considered the change of the local sl
and extrapolated to 1/t→0, when it was possible. This

FIG. 5. The survival probability forg,0. The inset shows the
bounds for the stretching exponents for the survival~filled symbols!
and persistence~open symbols!. For details see text. The dashe
@solid# line is given by (122z)/2 @2(122z)/3#.
8-6
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method neglects the saturation of the local exponent aft
finite crossover time and therefore gives a lower bound.
comparison, the corresponding bounds for persistence
also shown in the inset. There is a clear difference betw
the two. The numerics is consistent with the predicti
bRW5(122z)/2, and for the persistence the data sugges
expressionbC52(122z)/3.

The difference between the mean-field model and
DLCA is further elucidated in Fig. 6. It shows that in th
DLCA the distance distribution between the clusters s
rounding a persistent one scales similar to that of the clu
size distribution

P~ l ;t !5L21hS l

L D . ~17!

Hence, the distribution widens at the same rate as the a
age distanceL(t);tz grows in contrast to the RW case. F
largex the scaling functionh(x);exp(2bx) and the Lifshitz
tail argument leads to an estimatebL5(122z)/3, which dis-
agrees with the numerics.

The inconsistency is not surprising since in the DLC
there are fluctuations coming from the statistical nature
collisions, which are not taken into account in the Lifsh
approach. More precisely, the diffusion constants of
neighbors of persistent clusters have some unknown di
bution. Furthermore, the diffusion constant also correla
with the distance from the persistent cluster. These facts
gether with the fact that the stretching exponent is de
mined by the fluctuations makes an analytical estimation
the persistence forg,0 hard.

IV. IMPLICATIONS FOR THE CLUSTER SIZE
DISTRIBUTION

We now turn to the relation of the persistence to the cl
ter size distribution. We concentrate first on the caseg.0,
when the cluster size distribution has a power-law tail
small cluster sizes. The dynamical scaling together with
definition of the dynamical and polydispersity exponentz
and t, respectively, were discussed in the introduction@Eq.

FIG. 6. The scaling of the distance distribution between
clusters surrounding a persistent one in DLCA forg520.8.
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~1!#. The scaling theory further states that all the clus
number densities decay in a similar manner at large tim
i.e., ns(t)/n1(t)→bs as t→` @35#, wherebs is a constant.
Here the exponent of interest is the universal decay expo
w, which describes the decreasens(t);t2w.

Using S(t);tz together withf (x);x2t as x→0 in Eq.
~1! givesns(t);t2(22t)zs2t so that the three exponents d
fined above are related by the scaling relationw5(22t)z
@36#. Therefore the full characterization of the dynamic sc
ing requires the knowledge of only two of the exponen
However, even on the mean-field level of Smoluchowsk
rate equation theory the only readily calculatable expon
for DLCA is the dynamic exponentz. The difficulty with, for
example, the polydispersity exponentt arises from the fact
that to calculate it requires the knowledge of the whole sc
ing function @14#. Next we argue how knowing the persis
tence exponentuC helps to overcome this problem.

Let us start from the trivial size independent case,g50,
for which an exact solution of the cluster size distributi
ns(t) is possible@27#. The actual form of this distribution is
not important for our purposes. The point is that the dec
exponentw53/2 for any short-range correlated initial distr
bution ns(0). Also the cluster persistence exponent is u
versal@9#. Hence, by noticing that for a monodisperse init
condition,ns(0)5d1,s , the persistence probability is simpl
n1(t), we obtain the persistence exponentuC(0)5w(0)
53/2.

The exponentsuC and t should be related also forg
Þ0, since the persistent clusters are those ones, which
not aggregated with other ones. Asymptotically, the num
of these clusters will be presented by the parts!S(t) of the
cluster size distribution, which in turn is characterized by t
exponentt. Thus the same identificationuC5w can be made
also for 0,g,2 and we are led to the scaling relation

uC5~22t!z. ~18!

The same relation is valid in a different context of the scal
of intervals between persistent regions in the reacti
diffusion modelA1A→B @37#. HereuC52z and Eq.~18!
givest(g)50. This is interesting in two respects. First, th
polydispersity exponent is discontinuous asg→0 since
t(0)521Þ05t(01). Although quite uncommon, such a
outcome is possible also on the mean-field level of the r
equation theory@38#. It is more surprising, that the polydis
persity exponent is a constant, independent of the value og.
It indicates that for anyg.0 the physics of small clusters i
dictated by the fact that they are essentially immobile co
pared to the larger~average-sized! ones in the system.

Simulations confirm the constant value oft although
again the crossover effects make the analysis intractable
g50 @10#. The numerically estimated values for the exp
nents are presented in Table I. The scaling relation~18! is
obeyed within the error bars.

For g,0 the scaling function of the cluster size distrib
tion behaves asf (x);exp(2Ax2umu) when x→0. Using a
similar reasoning as forg>0 leads now to the relationbC
5umuz. Together with the resultbC52(122z)/3 this sug-
gests thatm(g)52g/3. Direct measurement of the expone

e
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m is hard as one would need to compute the scaling func
f (x) for x&0.1 to see the asymptotic behavior. Howev
even rough numerics shows thatm(22).21.75, which is
larger than the mean-field value predicted by the Smo
chowski’s rate equation theory,m5g. Hence, the spatia
fluctuations help clusters to survive longer.

V. CONCLUSIONS

We have investigated the probability of a cluster to rem
unaggregated in one-dimensional DLCA. The diffusivity
clusters is taken to vary with size asD(s);sg, which ex-
tends the results known forg50 to the more relevant case o
size dependent diffusion.

The first main result is that the persistence probabi
decays as

Psurv~ t !;H exp~2CtbC!, g,0

t23/2, g50

t22/(22g), g.0.

~19!

The stretching exponent fits well to the expressionbC
52(122z)/3, where the dynamic exponent is given byz
51/(22g). Equation~19! shows that one cannot use th
exactly solvable size independent aggregation as a sta
point for a perturbative analysis of the size dependent c
The second main result is that the decay of the persisten
related to the dynamic exponentz through the scaling rela
tions

uC5~22t!z,

bC5umuz,

where the exponentst andm characterize the small size ta
of the cluster size distribution. Hence, by solving for t
persistence one determines the behavior of the cluster
distribution. Forg>0 the scaling relation and Eq.~19! lead
to a discontinuity of the polydispersity exponent:t(0)5
21, but for 0,g,2 the distribution is flat andt50.

The persistence probability forg>0 is obtained from a
mean-field analysis for three annihilating random walkers
explains the discontinuous and nonmonotonic behavior
the persistence exponent, i.e., why 3/25uC(0).uC(01)
51. This is since forg.0 a persistent cluster eventual
adopts the optimal strategy@28# by becoming more and mor
stationary as time goes on. This interpretation is further s
ported by the fact that the probability of an originally emp

TABLE I. Exponents measured from the numerical data. Fog
50.40 the asymptotic regime is not reached in simulations~except
for z) and only upper bounds are shown.

g z uC t

0.00 0.50060.001 1.5060.02 1.0060.02
0.40 0.62560.001 ,1.35 ,0.10
0.57 0.69960.002 1.4360.05 0.0260.05
1.00 1.0060.01 2.0060.02 0.0060.02
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site to be never occupied by a cluster decays algebraic
with the same exponent as the cluster persistence@9#. The
major consequence of the discontinuity is the divergence
the crossover time to the asymptotic behavior wheng
→01. This also plagues the scaling of the cluster size d
tribution since these two are interconnected.

The mean-field random-walk analysis, which can be a
lyzed in the asymptotic limit wheng>0, becomes intrac-
table forg,0. We have thus resorted to numerical studi
These reveal that while the RW picture adequately descr
the persistence forg>0, it is inadequate forg,0. The rea-
son is that there the persistence is affected by the fluctuat
in the motion of the slowly moving particles around the pe
sistent one. These are taken into account approximatel
the mean-field theory, which results only to a qualitative u
derstanding of the persistence. Forg.0 the approximation
is practicable as the fluctuations of the slow particle or cl
ters become asymptotically irrelevant. Forg,0 they are sig-
nificant as the persistence decays much faster than a p
law. As an interesting consequence, the mean-field theor
applicable when the cluster size distribution is broad arou
the mean@g>0: f (x);x2t, x→0# but not when it is nar-
row @g,0; f (x) decays faster than any power forx→0].

The difference between the mean-field random-w
model and the DLCA is demonstrated by the scaling of
distribution measuring the distance between the partic
~clusters! enclosing a surviving~persistent! one @see Eqs.
~15! and ~17!#. The main difference is that in the theory th
average distance grows faster than the distribution wid
whereas in the DLCA these both take place at the same
This implies the existence of a new, nontrivial length sc
;ta in the RW problem. A Lifshitz tail argument suggest a
expressiona5(2z11)/4. This leads tobRW5(122z)/2,
which agrees with the simulations. Hence, the argumen
the exponential decay is the ratio of the two natural len
scalest1/2 and tz of the problem. An intriguing detail of the
random-walk model is that according to the numerics
position distribution of the neighbor of the surviving partic
scales asp(x;t)5t2zg(@x2bta#/tz) with a purely Gaussian
scaling functiong(y). It would be worthwhile to try to show
this analytically and also solve Eq.~7! with appropriate
boundary conditions. This would require new analytic too
to handle time-dependent absorbing boundary value p
lems as the traditional image method cannot be applied.
believe this to be an unsolved mathematical problem wait
for solution.

The present study investigates cluster persistence
diffusion-limited cluster-cluster aggregation. It would be i
teresting to consider the behavior of unaggregated cluste
other models, too. Furthermore, we have concentrated o
on the one-dimensional case. It is natural to ask what can
done in higher dimensions. There a similar simple rando
walk analysis is hardly possible. On the other hand the lo
crossover effects nearg50 presumably persist and mak
simulation studies hard. Nevertheless, we believe that
general structure of the problem remains and conclude w
the conjecture that also in higher dimensions the behavio
the cluster size distribution is determined by the solution
the cluster persistence problem.
8-8
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APPENDIX A: ASYMPTOTIC ANALYSIS OF SURVIVAL
FOR gÌ0

The Fourier transform of Eq.~7! reads

]r̂

]t
52~D21D1tgz!~kx

21ky
2!r̂12D2kxkyr̂, ~A1!

where we have for notational simplicity used variablesx and
ly
t b
n
a

f-
th

-

05110
g

y instead ofx12 and x23, respectively. The hat denotes th
Fourier transform andkx and ky are the associated Fourie
variables ofx and y. The solution of Eq.~A1! fulfilling the
initial condition r f(x,y;0)5d(x2x0)d(y2y0) is

r̂ f~kx ,ky ;t !5exp@ ikxx01 ikyy02D2t~kx2ky!2

2D~ t !t~kx
21ky

2!#,

where D(t)5D1tgz/(gz11). The subscriptf refers to the
solution without absorbing boundaries. The inverse tra
form reduces to calculating Gaussian integrals with the re
r f~x,y;tux0 ,y0!5
1

4ptAD~ t !@2D21D~ t !#
expS 2

@D21D~ t !#@~x2x0!21~y2y0!2#12D2~x2x0!~y2y0!

4tD~ t !@D21D~ t !# D . ~A2!
the

at

in

a

At the long time limit this reduces to a Gaussian

r f
as~x,y;tux0 ,y0!5

1

4pD~ t !t
expS 2

~x2x0!21~y2y0!2

4D~ t !t D ,

which is nothing but the solution of Eq.~7! for D250. This
validates the approximation made in Sec. III C.

Since the solution~A2! is not symmetric in reflection with
respect to thex andy axis, the method of images frequent
used in problems including absorbing boundaries canno
applied to construct the solution which would be zero alo
the axes. To obtain an estimate for the survival probability
a series expansion in powers oft, we neglect the cross-term
2D2(x2x0)(y2y0) in the exponential of Eq.~A2!, and de-
note the resulting radially symmetric part byr f

S. The term
omitted is of the same order int as the termD2@(x2x0)2

1(y2y0)2#, and would hence contribute only on the pre
actors in the expansion. Now the image method gives
solution obeyingr50 alongx50 andy50, for x>0 and
y>0

r~x,y;tux0 ,y0!'r f
S~x,y;tux0 ,y0!2r f

S~x,y;tu2x0 ,y0!

2r f
S~x,y;tux0 ,2y0!

1r f
S~x,y;tu2x0 ,2y0!.

Integrating this over the first quadrant$x>0,y>0% yields

Psurv~ t !'
2zx0y0

pD1t2z
@122zR16z2R 21O~R 3!#, ~A3!

whereR5D2 /(D1tgz) denotes the ratio of the diffusion co
efficients. The asymptotic behavior sets in forR!1, which
e
g
s

e

indicates the divergence of the crossover time to
asymptotic behavior wheng→0.

APPENDIX B: TWO PARTICLE SURVIVAL

Consider the survival of two particles, which annihilate
contact but otherwise evolve according to

ẋ1~ t !5j1~ t !

ẋ2~ t !5j2~ t !,

where^j i(t)&50 and^j i(t)j j (t8)&52Di(t)d i j d(t2t8). Let
the diffusion coefficients of the particles to beD1(t)
5D1tgz and D2(t)5D2, wherez51/(22g). The distance
y(t)5x2(t)2x1(t) between the particles obeys the Langev
equation

ẏ~ t !5AD1tgz1D2G~ t !,

where^G(t)&50 and^G(t)G(t8)&52d(t2t8). This is of the
standard form@24# and can directly be transformed to
Fokker-Planck equation

]r~y;t !

]t
5~D21D1tgz!

]2r~y;t !

]y2
, ~B1!

where r(y;t) is the probability density of finding the two
particles at distancey at time t.

The solution of Eq.~B1! fulfilling the boundary and initial
conditions r(0;t)50 and r(y;0)5d(y2y0) is readily
found to be
8-9
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r~y;T~ t !!5
1

A4pT @e2(y2y0)2/4T2e2(y1y0)2/4T#,

whereT(t)5D2t1D1t11gz/(11gz). The survival probabil-
ity

Psurv~ t !5E
0

`

dyr~y;t !5erfS y0

A4TD
whose asymptotic behavior at larget is given by
o

e

05110
Psurv~ t !;H y0~pD2t !21/2@12R/~4z!1•••#, g,0

y0@p~D11D2!t#21/2@12O~ t !#, g50

y0@pD1t2z/2z#21/2@12z/R1•••#, g.0,

whereR5D2 /(D1tgz) illustrating again the divergence o
the crossover time whenugu→0. The survival exponen
uRW5max$1/2,z%, i.e., it is given by the dynamics of th
faster particle. The interpretation of the result forgÞ0 is
simple: eventually the time scales separate and the slo
particle becomes stationary.
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